类固醇能拯救生命吗? Anees Bahji: Can steroids save your life?

上映日期: 0




演员: Anees Bahji

Steroids: they’re infamous for their use in sports.
类固醇:这类物质在体育赛事中的 使用早已臭名昭著。
But they’re also found in inhalers, creams to treat poison ivy and eczema,
但它们也常见于吸入器, 治疗藤毒和湿疹的药膏,
and shots to ease inflammation.
The steroids in these medicines aren’t the same as the ones used to build muscle.
这些药物中的类固醇 和用于促进肌肉生长的类固醇不同。
In fact, they’re all based on yet another steroid—
实际上,它们都是基于 另一种类固醇物质——
one our body produces naturally, and we can’t live without.
我们人体可以自然合成, 且维持生命所必需的类固醇。
Taking a step back, the reason there are so many different steroids
退一步说, 类固醇种类繁多的原因是
is because the term refers to substances with a shared molecular structure,
类固醇这一专有名词 泛指具有共同分子结构,
rather than shared effects on the body.
Steroids can be naturally occurring or synthetic,
类固醇可以天然存在 或是通过人工合成,
but what all steroids have in common is a molecular structure
但所有类固醇物质的共同特性 是它们的分子结构。
that consists of a base of four rings made of 17 carbon atoms
这种分子结构由 4 个环 (共 17 个碳原子)组成:
arranged in three hexagons and one pentagon.
3 个六碳环和 1 个五碳环。
A molecule must contain this exact arrangement to be a steroid,
一个分子必须具有这样精确的排列 才能被称作为固醇类物质,
though most also have side chains—
additional atoms that can dramatically impact the molecule’s function.
这些额外的原子 可以极大改变分子的功能。
Steroids get their name from the fatty molecule cholesterol.
类固醇的命名 源于脂肪分子胆固醇。
In fact, our bodies make steroids out of cholesterol.
实际上,我们人体 会从胆固醇中生成类固醇。
That fatty cholesterol base means that steroids
脂肪胆固醇基底能够 让类固醇物质
are able to cross fatty cell membranes and enter cells.
Within the cell, they can directly influence gene expression
在细胞内, 它们可以直接影响基因表达
and protein synthesis.
This is different from many other types of signaling molecules,
which can’t cross the cell membrane
and have to create their effects from outside the cell,
through more complicated pathways.
So steroids can create their effects faster than those other molecules.
所以相比其它分子, 类固醇可以更快的产生作用。
Back to the steroids in anti-inflammatory medications:
all of these are based on a naturally occurring steroid called cortisol.
这类类固醇都是基于一种 天然存在的类固醇,即皮质醇。
Cortisol is the body’s primary stress signal,
and it has a huge range of functions.
When we experience a stressor—
anything from a fight with a friend, to spotting a bear,
比如和朋友的一场争执, 突然发现一头熊,
to an infection or low blood sugar—
the brain reacts by sending a signal from the hypothalamus to the pituitary gland.
大脑就会通过下丘脑向脑垂体 发出信号来做出反应,
The pituitary gland then sends a signal to the adrenal glands.
The adrenal glands produce cortisol, and release some constantly.
最终肾上腺产生皮质醇, 并不断进行释放。
But when they receive the signal from the pituitary gland,
但是当肾上腺 从脑垂体接收到信号时,
they release a burst of cortisol,
which spurs the body to generate more glucose for energy,
会刺激人体产生 更多的葡萄糖作为能量来源,
decrease functions not immediately related to survival, like digestion,
降低与生存没有直接关系的 功能运作,比如消化,
and can activate a fight-flight-or-freeze response.
并且能激活人体的 “战斗、逃跑或原地不动”反应机制。
This is helpful in the short term, but can cause undesirable side effects
这在短期内很有帮助, 但如果持续时间太长,
like insomnia and lowered mood if they last too long.
将可能导致一些副作用, 诸如失眠症和情绪低落。
Cortisol also interacts with the immune system in complex ways—
皮质醇同样也和免疫系统 有着复杂的相互作用——
depending on the situation,
it can increase or decrease certain immune functions.
皮质醇可以加强或降低 一定的免疫功能。
In the process of fighting infection,
the immune system often creates inflammation.
Cortisol suppresses the immune system’s ability to produce inflammation,
皮质醇能够抑制 免疫系统产生炎症的能力,
which, again, can be useful in the short term.
But too much cortisol can have negative impacts,
过多的皮质醇对人体 具有负面影响,
like reducing the immune system’s ability to regenerate bone marrow and lymph nodes.
例如降低免疫系统 再生骨髓和淋巴结的能力。
To prevent levels from staying high for too long,
为了防止皮质醇的含量 长时间处于过高水平,
cortisol suppresses the signal that causes the adrenal glands
to release more cortisol.
引起肾上腺释放 更多皮质醇的信号。
Medicinal corticosteroids channel cortisol’s effects on the immune system
药用皮质类固醇可通过引导 皮质醇对免疫系用的作用
to fight allergic reactions, rashes, and asthma.
来对抗过敏反应、 皮疹和哮喘。
All these things are forms of inflammation.
所有这些都是 炎症的不同表现形式。
There are many synthetic steroids that share the same basic mechanism:
很多合成类固醇 也有着相同的基础作用机理:
they enhance the body’s cortisol supply,
which in turn shuts down the hyperactive immune responses
that cause inflammation.
These corticosteroids sneak into cells and can turn off the “fire alarm”
这些皮质类固醇潜入细胞中, 通过抑制炎症信号的基因表达
by suppressing gene expression of inflammatory signals.
The steroids in inhalers and creams impact only the affected organ—
吸入器和药膏中的类固醇 仅影响着一个器官——
the skin, or the lungs.
Intravenous or oral versions, used to treat chronic autoimmune conditions
常用于治疗慢性自身免疫性疾病 (例如狼疮或炎症性肠病)的
like lupus or inflammatory bowel disease, impact the whole body.
静脉注射或口服形式的类固醇 则能对全身造成影响。
With these conditions, the body’s immune system attacks its own cells,
在患有此类疾病的情况下, 人体免疫系统会攻击自身细胞,
a process analogous to a constant asthma attack or rash.
这是一个类似于哮喘频繁发作 或皮疹不断复发的过程。
A constant low dose of steroids
can help keep this renegade immune response under control—
能有助于控制 上述叛逆的免疫反应——
but because of the negative psychological and physiological effects
但对于因长期暴露于 高剂量所产生的
of longterm exposure,
higher doses are reserved for emergencies and flare-ups.
较高剂量的类固醇通常 只被用于应对紧急和突发事件。
While an asthma attack, poison ivy welts, and irritable bowel syndrome
尽管哮喘发作、藤毒红肿, 以及肠易激综合症
might seem totally unrelated, they all have something in common:
可能看似毫不相关, 但它们实际有着共性:
an immune response that’s doing more harm than good.
And while corticosteroids won’t give you giant muscles,
虽然皮质类固醇 无法赐予你健硕的肌肉,
they can be the body’s best defense against itself.
但它们却是人体 抵抗自身伤害的最佳防御工具。